Large-Scale Density Functional Theory Transition State Searching in Enzymes
نویسندگان
چکیده
منابع مشابه
Large-Scale Density Functional Theory Transition State Searching in Enzymes.
Linear-scaling quantum mechanical density functional theory calculations have been applied to study the rearrangement of chorismate to prephenate in large-scale models of the Bacillus subtilis chorismate mutase enzyme. By treating up to 2000 atoms at a consistent quantum mechanical level of theory, we obtain an unbiased, almost parameter-free description of the transition state geometry and ene...
متن کاملDensity functional theory in the solid state.
Density functional theory (DFT) has been used in many fields of the physical sciences, but none so successfully as in the solid state. From its origins in condensed matter physics, it has expanded into materials science, high-pressure physics and mineralogy, solid-state chemistry and more, powering entire computational subdisciplines. Modern DFT simulation codes can calculate a vast range of st...
متن کاملFluid-solid transition in simple systems using density functional theory.
A free energy functional for a crystal which contains both the symmetry-conserved and symmetry-broken parts of the direct pair correlation function has been used to investigate the fluid-solid transition in systems interacting via purely repulsive Weeks-Chandler-Anderson Lennard-Jones potential and the full Lennard-Jones potential. The results found for freezing parameters for the fluid-face ce...
متن کاملDimensional crossover and the freezing transition in density functional theory
A modified geometrically based free-energy functional for hard spheres is proposed which gives reliable results even for situations of extreme confinements that reduce the effective dimensionality D. It is accurate for hard spheres between narrow plates (D = 2), inside narrow cylindrical pores (D = 1), and is exact in the 0D limit (a cavity that cannot hold more than one particle). This functio...
متن کاملLarge-scale density functional theory investigation of failure modes in ZnO nanowires.
Electromechanical and photonic properties of semiconducting nanowires depend on their strain states and are limited by their extent of deformation. A fundamental understanding of the mechanical response of individual nanowires is therefore essential to assess system reliability and to define the design space of future nanowire-based devices. Here we perform a large-scale density functional theo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Physical Chemistry Letters
سال: 2014
ISSN: 1948-7185
DOI: 10.1021/jz5018703